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The effects of thermal conditions on the patterns of two-dimensional Boussinesq 
convection are studied by numerical integration. The adopted thermal conditions are 
(i) the heat fluxes through both upper and lower boundaries are fixed, (ii) the same as 
(i) but with internal cooling, (iii) the temperature on the lower boundary and the heat 
flux through the upper boundary are fixed, (iv) the same as (iii) but with internal 
cooling, and (v) the temperatures on both upper and lower boundaries are fixed. The 
numerical integrations are performed with Ra = lo4 and Pr = 1 over the region whose 
horizontal and vertical lengths are 8 and 1, respectively. 

The results confirm that convective cells with the larger horizontal sizes tend to form 
under the conditions where the temperature is not fixed on any boundaries. Regardless 
of the existence of internal cooling, one pair of cells spreading all over the region forms 
in the equilibrium states. On the other hand, three pairs of cells form and remain when 
the temperature on at least one boundary is fixed. The formation of single pairs of cells 
appearing under the fixed heat flux conditions shows different features with and 
without internal cooling. The difference emerges as the appearance of a phase change, 
whose existence can be suggested by the weak nonlinear equation derived by Chapman 
& Proctor (1980). 

1. Introduction 
It is well known that in Benard convection, which occurs between two horizontal 

isothermal boundaries, the horizontal and the vertical scales of the convective cells are 
of the same order for moderate values of the Rayleigh number (e.g. Rayleigh 1916; 
Schluter, Lortz & Busse 1965; Busse & Whitehead 1971; Ogura 1971), although the 
cells with large horizontal scales can be formed at higher Rayleigh number (Rothermel 
& Agee 1986).? On the other hand, when the heat fluxes through both upper and lower 
boundaries are fixed, the horizontal scale of the equilibrium convective cells are 
reported to be much larger than the vertical scale even when the moderated values of 
the Rayleigh number are adopted (e.g. Sparrow, Goldstein & Jonsson 1964; Hurle, 
Jakeman & Pike 1967; Jakeman 1968; Sasaki 1970; Hewitt, McKenzie & Weiss 1980; 
Chapman & Proctor 1980; Chapman, Childress & Proctor 1980). However, as 

t The horizontal scales of Benard convective cells for high Rayleigh number seem to be 
controversial. For example, at the value of Rayleigh number 600 times larger than the critical value, 
Rothermel & Agee (1986) present cells with a horizontal scale about ten times larger than the layer 
depth in their two-dimensional calculations. However, Sykes & Henn (1988) do not obtain such large 
cells in a similar situation but with a different numerical scheme. 
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described below, there are several inconsistencies between the numerical results and the 
weak nonlinear descriptions of fixed flux convection presented so far. 

Within the framework of linear theory, Sparrow et al. (1964) show that the critical 
wavelength for the fixed flux condition is infinite. This peculiar characteristic is used by 
Hurle et al. (1967) and Jakeman (1968) for the description of crystallization in metallic 
liquids and Sasaki (1970) for the description of mesoscale cellular convection observed 
behind midlatitude cyclones in the atmosphere. However, the critical wavelength 
cannot be regarded as a very good measure of the cell sizes at Rayleigh numbers larger 
than the critical value. Since the maximum growth rate curve approaches the short- 
wavelength region immediately as the Rayleigh number increases above the critical 
value (see Appendix A), the linear stability theory predicts that the aspect ratio, which 
is defined as the ratio of the horizontal scale to the vertical scale of convective cells, 
should be of the order of unity at least at the onset of convection. 

Two-dimensional nonlinear calculations for the fixed flux conditions are performed 
by Hewitt et al. (1980, hereinafter referred to as HMW80). The experiments are carried 
out in the rectangular region of 0 < x < 8 and 0 < z < 1 with the Rayleigh number 
Ra = 2.4 x lo3 - 1.4 x lo6 and the Prandtl number Pr = GO (the definitions of Ra and 
Pr are given in 92). This values of the Prandtl number is adopted because they are 
considering mantle convection. The results of HMW80 show that, when Ra 2 2.4 x lo5, 
the horizontal scale of convective cells grows gradually until the whole computational 
domain is covered by a single convective cell. 

The theoretical description of the horizontal growth of convective cells is made by 
Chapman & Proctor (1980, hereinafter referred to as CP80). CP80 derives a weak 
nonlinear equation governing the leading-order evolution of temperature at Ra N Ra,, 
which exemplifies that an equilibrium solution is unstable to a disturbance of the longer 
wavelengths. HMW80 points out that their numerical results obtained at 
Ra 2 2.4 x lo5 are compatible with the theory of CP80. However, we have to note here 
that, a single convective cell spreading all over the computational domain is not 
observed in the results of HMW80 with the smaller values of the Rayleigh number 
where the amplitude expansion of CP80 is expected to be more reliable. 

Two-dimensional convection driven by an internal homogeneous heat source instead 
of the heat flux through the lower boundary is also considered by HMWSO. The 
calculations are performed with the same parameters as the fixed heat flux experiments. 
The results show that, for all cases, a single convective cell spreading all over the 
domain does not appear, but three to four cells with unequal sizes remain. The 
corresponding weak nonlinear theory is developed by Chapman et al. (1980, hereinafter 
referred to as CCPSO), which predicts that an equilibrium state with multiple cells in 
a given horizontal domain is unstable and finally a single cell should appear. For the 
case of convection driven by the internal heat source, the results of nonlinear 
calculation are not compatible with the expectation of the weak nonlinear theory. 

In this study we once again perform numerical calculations of two-dimensional 
Boussinesq convection under various thermal conditions. We reconsider the cor- 
respondence between the numerical results and the weak nonlinear theory. Focus is 
placed on the cases where the heat flux is fixed at the boundaries in order to exemplify 
when and how the convective cells grow horizontally. The calculations under fixed 
temperature conditions are also performed for the purpose of comparing flow patterns 
to those of the fixed flux cases. We have to note here that, throughout this paper, we 
assume Pr = 1 rather than Pr = co of HMW80. Moreover, when the convection is 
driven internally, it is assumed to be by internal cooling rather than internal heating. 
This configuration models the atmospheres which are heated at the surface and cooled 
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internally by radiation. The reason why we adopt those conditions is that an 
investigation of the appearance of convective cells with large aspect ratios can be useful 
in describing the atmospheric phenomena. For example, 3&60 day oscillation 
observed in the equatorial atmosphere has the zonal wavenumber one structure 
(Madden & Julian 1972; Numaguti & Hayashi 1991 a, b). It is usually accepted that the 
large aspect ratio of 3&60 day oscillation can be interpreted as the characteristic of 
moist convection (Xie 1994). However, the embedded dynamical structure is still 
unclear and hence it is of interest to learn dry convection also gives a large aspect ratio 
in certain cases. 

In $2 we will summarize the mathematical formulation and the numerical method 
utilized. In $ 3  the results of numerical integrations are presented. It is shown that the 
fixed flux conditions both with and without internal cooling give a single pair of 
convective cells, although the evolution of the cells are different. In $4, we try to 
describe the difference of the growth of cells by the use of the weak nonlinear theory 
of CP80. It is suggested that the growth of disturbances for the internal cooling case 
depends on the phase relation between the equilibrium solution and the unstable 
disturbances. 

2. Model 
We consider two-dimensional Boussinesq fluid in a laterally periodic domain. The 

thermal conditions adopted here are illustrated in figure 1. In case FF (figure 1 a),  the 
heat fluxes through the upper and lower boundaries are fixed to be constant and equal 
to each other. In case FQ (figure 1 b), the heat supplied by the constant heat flux through 
the lower boundary is equal to that lost by the internal homogeneous cooling. The heat 
flux through the upper boundary is zero. This case corresponds to the reverse of the 
HMW80 model of mantle convection which is driven by the internal heat source. In 
case TF (figure 1 c), the temperature on the lower boundary and the heat flux through 
the upper boundary are fixed. In case TQ (figure I d ) ,  the temperature on the lower 
boundary is fixed and the homogeneous internal cooling exists. The heat flux through 
the upper boundary is zero as it is in case FQ. In case TT (figure 1 e), the temperatures 
on both lower and upper boundaries are fixed. This corresponds to the usual BCnard 
convection model. 

The physical quantities of the Boussinesq fluid are non-dimensionalized in the 
following way. The horizontal and vertical coordinates x, z are non-dimensionalized by 
the fluid depth d, time t is by d2/K, velocity (u,  w) is by K/d, where K is the thermal 
diffusivity. Temperature T is non-dimensionalized by 4 d/K in cases FF, FQ, TF and 
TQ, where F, is the heat flux fixed or averaged on the boundary. In case TT, it is non- 
dimensionalized by the temperature difference between upper and lower boundary AT. 

According to the scales described above, the Rayleigh number Ra is defined as 
follows. In cases FF, case FQ, case TF and case TQ, 

&g ATd3 
and in case TT, Ra = 

V K  

Here d is the coefficient of volume expansion, v is the kinematic viscosity, g is the 
acceleration due to gravity. 
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FIGURE 1. Illustration of the thermal conditions for numerical experiments. (a) Case FF, (b) case 
FQ, (c) case TF, (d) case TQ, (e) case TT. 

The non-dimensionalized equations are given by 

where $ is the stream function, Pr = V / K  is the Prandtl number. The non- 
dimensionalized heating rate Q and the thermal conditions are summarized in table 1. 
The adopted kinematic and stress conditions are the same for all cases: 

$r = az$ - = 0 (at z = 0,l). 
azz 

All calculations are performed with Pr = 1 and Ra = lo4. The calculation domain is 
restricted to the rectangular region of 0 d x d 8 and 0 d z d 1. The numbers of grid 
points in the horizontal and vertical directions are 256 and 32, respectively. Under the 
resolution adopted here, the thermal boundary layer near the temperature fixed 
boundaries can be resolved. Those values are determined referring to those of 
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Upper boundary Lower boundary Heating rate 

- = - I  dT 
dz 

Case FF 

dT 
dz 

Case FQ -=(I 

-=-  dT 1 
dz 

-=-  dT 1 
dz 

Q = O  

Q =  -1 

Case TF - = - I  T =  1 Q = O  
dT 
dz 

Case TQ - = o  T = l  Q = - 1  
dT 
dz 

Case TT T=O T = l  Q = O  

TABLE 1. The list of thermal conditions adopted in the numerical experiments 

HMW80. Note that our lateral boundary conditions are periodic, while those of 
HMW80 are insulated walls. 

The system is integrated by a finite-difference method. Advection terms are 
expressed in terms of the Arakawa Jacobian. Time integrations are performed by the 
leapfrog scheme with the diffusion terms being lagging by one timestep to avoid 
computational instability. To remove the computational modes, the Heun scheme is 
used at every twenty timesteps. Timestep of integrations is for all cases. The initial 
conditions are the conductive solutions added by a point temperature perturbation 
with the value of placed at (x ,  z )  = 4,  A). 

3. The results of numerical integrations 
3 . 1 .  The fixed heat flux case (case FF)  

Figure 2 shows the vorticity and temperature fields obtained in case FF. At the onset 
of convection, cells with wavenumber k 2: 4 x 2x/8 appear (figure 2a) .  This 
wavenumber is slightly smaller than k = 3.9 which is the wavenumber of the most 
unstable mode given by the linear theory (Appendix A). After a pair of cells at x = 8 
diminish at t = 1.15, cells at x = 2 and x = 6 shrink and disappear at f = 7.85 (figure 
2 b, c).  This distinction of cells appears in the flow field as a conjunction of the upward 
and downward flows, while in the temperature field as a conjunction of the warm and 
cold regions. In the final steady state, there appears one pair of cells spreading all over 
the region (figure 2 d ) .  

The change of dominant wavenumber can be clearly observed in figure 3 which 
shows the time evolution of the amplitude of the Fourier components determined by 

1 128 

128 ,=,-, 
T(x,z )  = - C A,(Z)COS 

where L = 8 is the horizontal length of the domain. Figure 3 shows the values of A ,  
for z = and n = 0 ,1 ,2 ,3 ,4 .  At t = 1.15, the amplitude of n = 3 component becomes 
dominant. However, the amplitude of n = 1 component grows steadily at a growth rate 
of about 0.17 until t - 7.8,  and finally increases abruptly. The growth rate of 0.17 is 
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FIGURE 2. The vorticity fields (upper figures) and the temperature fields (lower figures) of case FF at 
(a) t = 0.5, (b)  t = 7,  (c )  t = 7.7, and (d )  t = 15. The charts on the right-hand side are the horizontal 
average of the temperature. The contour intervals of vorticities and temperatures are 30 and 0.1, 
respectively. 

quite smaller than the linear growth rate of the most unstable mode which is about 40. 
The phase of each Fourier component 8, does not change in due course (not shown). 

We perform several integrations with various spatial resolutions. The obtained result 
using the finer grid of 512 x 64 resembles figure 2. One pair of cells appear at t = 8.2 in 
the 512 x 64 case and the difference of the amplitudes of stream function in the steady 
states is 1.6 %. The experiments using coarser grids of 128 x 16 and 64 x 8 also yield the 
result that cells with wavenumber one form in the steady states. 

The elongation of convective cells under the fixed heat flux condition is also obtained 
by HMW8O with Pr = 00 and Ra = 2.4 x lo5, 1.4 x lo6. However, at the parameters 
Ra = 2.4 x lo3, 2.4 x lo4, HMW80 does not yield a single cell spreading all over the 



39 

FIGURE 3. The time evolution of amplitudes of Fourier components of temperature at z = f in 
case FF. The numbers indicate the wavenumber of each component. 
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FIGURE 4. Same as figure 2 but for case FQ at (a) t = 1, (b) t = 7, (c) t = 54, and ( d )  t = 70. 
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FIGURE 5. Same as figure 3 but for case FQ. 
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FIGURE 6. Same as figure 5 but for the phases of Fourier components. 

region. This contrasts to our result shown in figures 2 and 3 calculated at Ra = lo4, 
although the value of the Prandtl number is different from that of HMW80. A 
discussion on this point will be given in $ 5 .  

3.2. The fixed heat Jlux case with internal cooling (case FQ) 
The time evolution of the vorticity and temperature fields of case FQ is shown in figure 
4. As in case FF, the wavenumber of convective cells observed at the onset of 
convection is k 1: 4 x 2x/8, as is expected by the linear theory (Appendix A). In the final 
steady state, there appears one pair of cells spreading all over the region. However, the 
evolution process of the cells differs from that of case FF. Cells with wavenumber two 
instead of three form in the intermediate state (figure 4b). Then, after a very long time, 
there appear cells with wavenumber one. The change of dominant wavenumber 
appears in the flow field as a distinction of the negative and positive vorticities and in 
the temperature field as a connection of two warm regions. It is worth noting that a 
phase change occurs in due course. The position of upward flow in the final steady state 
is at x = 6 as shown in figure 4(d) ,  while those of the previous state are at x = 0 and 
x = 4. The phase of the steady state is shifted by fx compared to that at t = 7. 

The change of dominant wavenumber accompanied by the phase shift is clearly 
shown in the behaviour of the Fourier components as illustrated in figures 5 and 6. The 
amplitude of wavenumber one component decreases at first and then increases from 
t - 32 with the growth rate of about 0.17. This curious behaviour corresponds to the 
phase evolution of the wavenumber one component shown in figure 6. In other words, 
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FIGURE 7. Same as figure 2 but for case TF at (a) t = 0.5, (6) t = 10. 

the decay of the sine component whose symmetry is the same as that of the initial 
perturbation appears in the first change of the amplitude (figure 5), while the growth 
of the cosine component whose initial amplitude is at the noise level appears in the 
latter change of the amplitude. 

The long period it takes for a single pair of cells to emerge in case FQ is due to the 
fact that the growing cosine component starts from the numerical noise level. The 
growth rate of the wavenumber one component in case FF is almost the same as that 
of the growing phase of case FQ. In case FF, a single pair of cells emerges promptly 
because the initial disturbance and the growing component has the same symmetry. 

The initial condition dependency of the formation of a single pair of cells is tested 
by performing a calculation starting from a random disturbance instead of a point 
disturbance. A random white noise with the mean magnitude of 0.01 is utilized as an 
initial value for temperature. The result confirms that the wavenumber one component 
becomes dominant in the final steady state (not shown). 

The result that cells with wavenumber one appear in case FQ is consistent with the 
expectation given by the weak nonlinear calculation of CCPSO. However, the existence 
of the phase change has not been discussed in CCP80. We will return to this problem 
in $4. The full nonlinear calculations corresponding to case FQ performed by HMW80 
with Pr = 00 do not yield cells spreading all over the region. The discrepancy between 
the results of HMW80 and ours will be discussed in $5 .  

We finally note that the equilibrium state of case FQ (figure 4 d )  is slightly different 
from that of case FF. In case FF  the upward and downward regions are symmetric 
(figure 2d) ,  while in case FQ an asymmetric structure with a narrow upward region and 
a wide downward region appears. According to figure 4(d) ,  the width of the upward 
region is about 1.78, while that of the downward region is 6.22. HMW80 also gives the 
similar asymmetric structure in the results corresponding to case FQ. The existence of 
asymmetry between upward and downward regions is often considered as a 
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FIGURE 8. Same as figure 2 but for case TQ at (a) t = 1, (6) t = 10. 

characteristic of atmospheric moist convection (Bjerknes 1938). However, it may be 
worth noting that such asymmetry does exist in dry convection driven by internal 
cooling. 

The result of case TF is shown in figure 7. At the onset of convection, there appear cells 
with wavenumber five, as is expected from the linear theory (Appendix A). At t = 0.8, 
a cell with positive vorticity at x = 3 and a cell with negative vorticity at x = 5 
diminish. However, unlike the evolutions in cases FF and FQ, the change of cell size 
does not occur after the formation of cells with wavenumber three, according to our 
calculation continued up to t = 70. Figure 8 shows the result of case TQ. Likewise case 
TF, does not form one pair of cells spreading all over the region. At the onset of 
convection, cells with wavenumber four appear (figure 8a). At t = 1.7 cells with 
positive and negative vorticities diminish at x = 4 and cells with wavenumber three 
form, and then the system reaches its steady state, at least up to the end of our 
calculation at t = 70. As in case FQ, the asymmetric structure of a narrow upward 
region and a wide downward region emerges. The widths of upward and downward 
regions are 1.22 and 1.56, respectively. Calculations corresponding to cases TF  and TQ 
are performed by HMW80 with Ra = 2.4 x lo5 and Pr = co. The results also show that 
no cell grows to spread all over the region. 

We perform the calculation of case TT for the purpose of comparison with the cases 
presented so far. The result is shown in figure 9. At the onset of convection, there 
appear cells with wavenumber five (figure 9a). At t = 3.1, cells with positive and 
negative vorticity diminish at x = 4, and at t = 4.55 cells at x = 8 disappear. The 
calculation is performed up to t = 70, but no change is observed. The final steady cells 
are composed of wavenumber three. We may say that the condition that the 
temperature on at least one boundary is fixed is the dominant factor on the scale 
selection of convective cells. Note that the average heat flux through the lower 
boundary of case TT differs from that of case TF  and case TQ. 

3.3. The fixed temperature cases (cases TF, TQ, TT)  
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FIGURE 9. Same as figure 2 but for case TT at (a) t = 0.5, (b) t = 10. 

4. Description of phase change by weak nonlinear theory 
The weak nonlinear theory which explains the formation of horizontally elongated 

cells obtained in cases FF and FQ is considered by CP80 and CCP80. In this section, 
we try to describe the phase change appearing in case FQ by the use of the equation 
derived by CP80. As described below, the form of the governing equation does not 
change even when Pr = 00, the following discussion can be applied to the situation 
which includes the cases considered by HMW80. Unfortunately, we must confess 
beforehand that the discussion below breaks down at the value of the Rayleigh number 
with which the numerical integrations in $ 3  are performed. However, since the 
qualitative behaviour of the solutions resembles the numerical results presented in 8 3, 
we keep the following argument in order to suggest the dynamical structure embedded 
in the numerical results. 

The derivation of the equation governing the leading-order evolution of temperature 
follows the argument of CP80 (Appendix B). We assume Ra = Ra,+p2s2 (8 4 1, 
,u = O(1)) and rescale time and horizontal length as s4t + t ,  E X  + x .  Then, temperature 
and stream function are expanded in powers of E as follows: 

T =  e,+E2e2+. . . ,  (7) 

$h = “ q 5 0 + E 3 q 5 2 + . . .  . (8) 
We solve the O(e0) equations and can show that 8, is independent of z .  The O ( E ~ )  and 
0 ( s 4 )  equations give the time evolution of e,(x, 2 ) :  

Here, we have rescaled the variables so as to simplify the equation. Note that a = 0 in 
case FF. For case FQ, a = -0.3 with the parameters used in our experiments. The 
dependency of the Prandtl number appears only in a. 
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In the case of a = 0, CP80 analytically finds the steady solutions of (9) and 
investigates their stability. In the case of a + 0, CP80 and CCP80 numerically obtain 
steady solutions and investigate their stability. From these calculations, CP80 and 
CCP80 conclude that a steady solution is unstable to a perturbation of the longer 
wavelength regardless of the existence of heat source. 

In order to discuss the phase change observed in case FQ, a simpler analysis than 
those of CP80 and CCP80 can be made by utilizing a highly truncated system of the 
Fourier series. Let us assume that the system consists only of wavenumber m and one. 
The steady solution is given by the cells with wavenumber m. We will analyse its 
stability to the perturbation with wavenumber one. 

8,, of this truncated system is written by 

8, = ~(S(t)ei~"+S*(t)e-i~5)+~(M(t)emi~~+M*(t)e-mi~" 1, (10) 

where p = 27c/L and * represents complex conjugate. Substituting above expression 
into (9), we obtain 

-- as - ( , u 2 - p 2 ) p 2 s - I ?  4 p  4 {((S12+2m2(M12) S+Sm3m(2-m) S*'M) 
at 

"P4 + S,, m(m - 1)'s" M ,  

- = m2(,u2-m2p2)p2M-~p4{(m4~S~2+2m2~M~2)M-6,3 s3}-Sm2ap4S2, 
at 

aM 

where Sij is Kronecker's delta. The steady solution of wavenumber m can be given by 

Here, the phase of the steady state is set to be zero for simplicity. We must have 
,u2-m2p2 > 0 in order for a steady state to exist. The perturbation equations are 
obtained by placing S = S', M = MArn) +M' and substituting them into (1 1 )  and (12), 

- _  - {(2m2 - l)p2 -,u2}p2S' + S,, ap3(m - 1) (,d -3m2p2)'/2 S'* ,  (14) 
as' 
at 

-- - - m2p2(,u2 - m2p2) (M' + M' *). a w  
at 

The growth rates of the perturbation S' are 

which means that the wavenumber one component can grow provided that ,u is 
sufficiently small. The growth rates of M' are 0 and -2m2(,u2-m2p2)p2 < 0. Since 
the latter is always negative, the steady solution is stable to a perturbation of wave- 
number m. 

In the case of m = 2 and when the internal cooling exists, namely CL < 0, v- is 
greater than u+. The eigenfunction corresponding to the larger eigenvalue v- is 

S' = -i. (17) 
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FIGURE 1 1. The temperature deviation T -  of case FF. The contour interval is 0.05. The 
maximum and minimum values of contour levels are 0.30 and -0.30 respectively. 
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FIGURE 12. Same as figure 12 but for case FQ. The maximum and minimum values of contour 
levels are 0.25 and -0.15, respectively. 

Therefore, the largest growth rate is acquired by the perturbations f cos (px + $), 
which are out of phase with the basic steady state cos (2px).  The relationship between 
the basic steady state and the most unstable disturbance is illustrated in figure 10. If 
we describe the behaviour in terms of the positions of downward and upward regions, 
since the negative value of 8, corresponds to a downward region, the position of one 
of the downward regions is prohibited to move. If internal cooling does not exist, 
namely a = 0, the growth rate of disturbance is independent of its phase. 

In case FQ, cells with wavenumber one emerge from the cells with wavenumber two. 
During the elongation of the cells, the downward region at x = 2 does not move (figure 
4). This result is consistent with the discussion above. Although the asymmetry 
between the upward and the downward region is remarked in $3.2, such an asymmetry 
does not appear in the truncated system used here and is independent of the existence 
of the phase shift. 

The simple discussion presented above is valid only when Ra - Ra,. Actually, g+ is 
negative at the value of the Rayleigh number used in our numerical integrations. fi is 
interesting, however, that the behaviour at Ra - Ra, still agrees with the numerical 
solutions. The temperature deviation from the horizontal mean, T-  T, of cases FF and 
FQ are shown in figures 11 and 12, which may be considered to be independent of z.  
It seems that the dynamical structure at Ra - Ra, is maintained even at Ra = lo4. 



46 M .  Ishiwatari, S. Takehiro and Y.-Y. Hayashi 

5. Discussion 
In this section, we will discuss the difference between our results and those of 

HMW80. According to the results of HMW80, cells with wavenumber one are not 
expected to emerge at Ra = lo4. The discrepancy can be attributed to the difference of 
integration time. In our case FF, it takes 7 dimensionless time units for the cells to 
spread all over the region. On the other hand, in the case at Ra = 2.4 x lo4 of HMW80, 
the integration is continued only up to 1.60 dimensionless time units defined by us 
(366.3 time units owing to the scaling unit adopted by HMW80). The cell of HMW80 
would plausibly spread all over the region if the integration were continued. 

The experiments of HMW80 corresponding to case FQ do not present a single cell 
spreading all over the region. As in case FF, the shortage of integration time can be 
the reason for the difference between the results of HMWSO and ours. Especially in 
case FQ, if the final wavenumber transition is from wavenumber two to one, the phase 
change should occur, and hence it takes a longer time for the cells to spread than in 
case FF. In our experiment case FQ, it takes 50 dimensionless time units before 
observing the cells with wavenumber one. In the experiment of HMW80 with 
Ra = 2.4 x lo4, on the other hand, integration is performed only up to 1.02 
dimensionless time units (232.8 time units owing to the scaling unit adopted by 
HMW80). Their integration time is possibly insufficient for the cells to complete their 
evolution. 

Another possible reason why the convective cell does not evolve to the largest scale 
in case FQ of HMW80 is the existence of lateral boundaries. Under the lateral 
boundary conditions adopted by them, the phase change emphasized so far is inhibited 
by some initial conditions. According to the weak nonlinear theory presented in $4, the 
position of an upward region must be fixed during the transition of the dominant 
wavenumber from two to one. A possibility is that, since the existence of a lateral 
boundary does not allow this condition, the cells cannot spread over the region in 
HMW80. On the other hand, in the numerical solution of the weak nonlinear theory 
of CP80, a cell with wavenumber one actually grows in spite of the existence of lateral 
boundaries. The reason is that the initial condition selected by CP80 has an upward 
region just at the lateral boundary which satisfies the condition discussed above. 

Numerical calculations were performed at the Computer Center of the University of 
Tokyo, and at the National Institute for Environmental Studies, Environment Agency 
of Japan. Some of the figures were produced by GFD-DENNOU Library. 

Appendix A. Linear theory 
In this section, we summarize the results of the linear stability theory of the 

conductive solutions with no motion for five cases shown in figure 1. The critical 
Rayleigh number Ra, and the critical wavenumber k, under various thermal conditions 
have been calculated by Rayleigh (1916) for case TT, Jakeman (1968) for case FF, 
McKenzie, Roberts & Weiss (1974) for case TF and case TQ. In previous studies, the 
growth rates of unstable modes for Ra > Ra, have not been presented, except for case 
TT given by Ogura & Yagihashi (1969). We calculate the growth rates and present the 
wavenumbers of the most unstable modes for Ra > Ra,. 

The temperature distribution of the basic states is 

T =  1 -z-%Qz2 2 ,  (A 1) 
where Q is 0 for cases TT, FF and TF, and is - 1 for cases FQ and TQ. 
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FIGURE 13. The distribution of growth rates of the most unstable modes in (k,  RQ) space for Pr = 1. 
(a) Case FF, (b)  case FQ, (c)  case TF, (d )  case TQ, (e) case TT. The areas of negative values are 
shaded. 
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Case FF Case FQ Case TF Case TQ Case TT 
Ra, 120.0 240.0 384.7 867.7 654.5 

TABLE 2. Critical Rayleigh numbers and critical wavenumbers 

kc 0.0 0.0 1.76 1.79 2.22 

Case FF Case FQ Case TF Case TQ Case TT 

Wavenumber 3.9 3.5 3.9 3.5 3.9 

TABLE 3. The wavenumbers of the most unstable modes at Ra = lo4 

The equations governing the perturbation, which is expressed by ', are 

Figure 13 shows the distribution of the growth rates in (k,  Ra) space. These figures 
are given numerically with twenty vertical grid points. In case FF (figure 13 a) and case 
FQ (figure 13b), the critical wavelength becomes infinite. However, at Ra 2 1000, the 
wavenumber of the most unstable modes are from two to four regardless of the thermal 
conditions. 

The values of the critical Rayleigh numbers and the critical wavenumbers for five 
cases are shown in table 2. The values of the wavenumber of the most unstable modes 
at Ra = lo4 which is the value adopted in our numerical integrations are shown in 
table 3 .  

Appendix B. The derivation of equation (9) 
We summarize the derivation of the equation given by CP80, which governs the 

leading-order evolution of temperature in cases FF and FQ. Let us assume the 
Rayleigh number to be expressed as Ra = Ra, +p2e2 ( E  G 1, p = O( 1)). We rescale time 
and horizontal length as e4t + t ,  ex + x and expand temperature and stream function in 
powers of e as 

T =  80+e2e2+. . . ,  (B 1) 
+ = € $ $ 0 + € 3 $ $ 2 + . . .  . (B 2) 

Substituting (B 1) and (B 2) into (3) and (4), we obtain, from the O(eo) equation of 
temperature 

which means that B0 does not depend on z.  From the 0 ( e o )  equation of vorticity, we 
have 
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The O(2) equations are 

and the O(s4) equation of temperature is 

The equation for Bo(x, t) can be obtained by integrating (B 4) - (B 7) with z and 
eliminating c $ ~ ~  q42, 0, : 

The coefficients A - D are defined as follows. 

1 
P(z)(Qz+ 1)dz = -, 

Ra, 
2 

B = 2Ra, s: {P'(z)}' dz - s' [ p' {Ra, P(z,)( 1 + Qz,) - l} dz,] dz, 

- 1: Ra, P(z,) Qz, s" 1' {Ra, P(zl) (1 + Qz,) - 1) dz, dz, dz, 

0 0  

0 0  

C Ru,2{P(z)}'dz, 1: 
{P'(z)}, dz + Q N(z){ - P(z) P"'(z) + P'(z) P"(z)> dz 

{Ru, P(z,) (1 + Qz,) - l} dz, dz2 

- 2 1 Ra, P(z2) Qz, r' R, P(zJ dz, dz2, 
0 

where P(z), N(z) are polynomials given by 

P(z) = &z4 - &3 + AZ, 

N(z) = &z5 - $z3 + &z. 
(B 13) 

(B 14) 

By evaluating each term in (B 12), it can be shown that D = 0 if Q = 0. The 
dependency on Pr  appears only in (B 12). When Pr = 1, we have, for case FF, 
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By replacing ( A / B ) ” 2 x + x ,  A2 /Bt+  t, (C/B)1/200+80 and a = D/(BC)’/’, (B 8) is 
translated into (9). 
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